

Briefing to the ESSAAC Technology Subcommittee (TSC)

on

Radar Electronics Technology Requirements & Roadmaps

Wendy Edelstein JPL April 14, 2004

ESTO

Introduction

- · Process to Derive Technology Requirements
- Measurement Types
- · Technology Needs
- Example Requirements & Roadmaps: Large Aperture L-band SAR
- Integrated Radar Roadmap
- · Concluding remarks

ESTO

Process to Derive Radar Technology Requirements

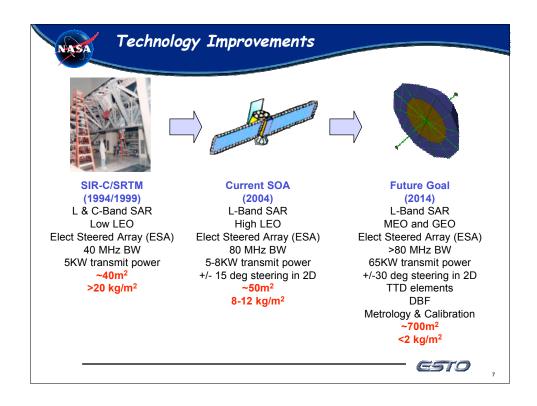
- ESTO formed a Radar/Radiometer Working Group whose charter is to validate the ESTIPS database and then generate technology roadmaps and development plans
- Members of the working group include JPL, GSFC, university and industry participation
- · 42 radar measurement scenarios were reviewed
 - Measurement scenarios/parameters were mapped to science roadmap
 - Technology challenges were assessed
 - · Performance or environmental requirements
 - · Resource constraints (mass, power, cost)
 - · Technology survey
 - Scenarios were classified
 - Enabling, Enhancing, Mature, Obsolete
 - Prioritized technology needs
 - · Focus on technologies enabling multiple high-priority measurements

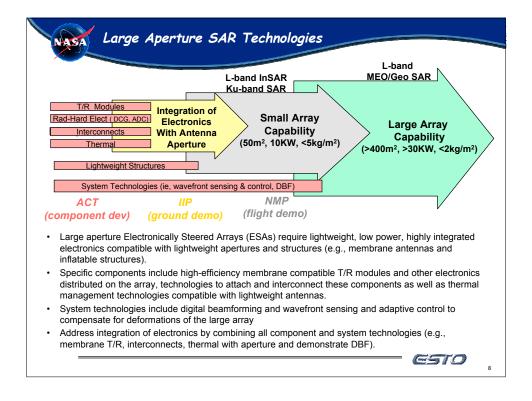
3

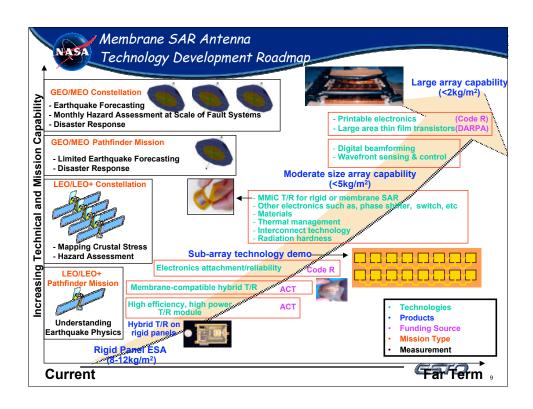
Measurement Types

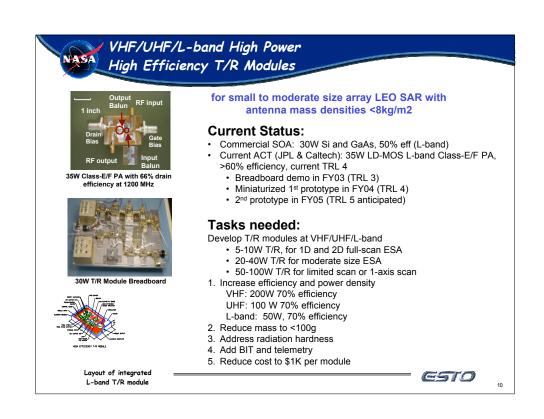
Measurement Type	Criticality	Utility (scenario ID)		
Large aperture SAR	Enabling	MEO/GEO L-band InSAR (45, 46) UHF/VHF Deep Soil Moisture (112)		
X-, Ku- & Ka-band Single-Pass Interferometers (using phased array antennas)	Enabling	100, 28?, 93, 161A, 163		
Millimeter Wave Atmospheric Radars using phased array antennas (Ka-, Wband, G-band)	Enabling	75, 76, 159, 160		
Moderate aperture SAR	Enhancing	22, 105, 92, 19, 44a, 44b, C1, 97, 158, 162		
Millimeter Wave Atmospheric Radars (Ka-, W-band)	Enhancing	68, 142, 154		
MEO Scatterometer	Enhancing	148		
Misc.	Enhancing	O2, 30, 51		
Airborne/Suborbital Platforms	Enhancing	161B, 161C, 47, 157		
Mature measurement scenarios	Mature technology	102, 151, 155, 29, 61, 90, 156		
Obsolete measurement scenarios	Obsolete	103, 104		

ESTO

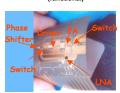


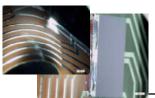

Primary areas recommended for technology investment:


- 1. Large Aperture SAR technologies
 - Focuses on electronics required for lightweight ESA (particularly L-band and Ku-band)
 - Will also benefit near-term SAR missions (of moderate aperture size)
- 2. X, Ku, Ka-band Interferometers
 - · Focuses on developing electronics for phase-stable ESA
 - · X-band is lower priority since significant investment by DoD
- 3. Millimeter Wave Atmospheric Radar
 - · Focuses on millimeter wave ESA (Ka, W, G-band)



Technology Challenges NASA **Higher Orbits** Lower Frequency (MEO, GEO) Large Deployable (UHF, P-band) (L-, Ku-, Ka-band) **Antennas** Electronics System Large Deployable Antenna Structures **Aperture** - Frequency/BW - Tx Power - Wide-area imaging - Resolution - Frequency/BW - Stiffness - Phase stability improvement - Surface flatness Scanning - Low DC power Enhanced - Lightweight Multiple beams - Low mass measurement - Lightweight materials - Stowed volume - Low cost - Rad-Hard - Cost reduction Metrology/Calibration **Phased Array** T/R modules - Inflatables Wavefront sensing and Phased-Array Feed **MMIC** devices - Deployables - Interferometric Reflect-array High pwr transmitters **Digital beamforming** Large Reflector Chirp generators
Digital receivers masts (>100m) - Manufacturability Large Rotating Reflector Multiple-feeds or shared-Thermal mgmt aperture - Signal distribution **E510**




Membrane L-band T/R Modules

ACT: Flex T/R using packaged parts

ACT: T/R using flip chip attachment (non functional prototype for flip chip development)

ACT: Test die flip chip attachment reliability testing

for large array MEO/Geo SAR with antenna mass densities <2kg/m2

Current Status:

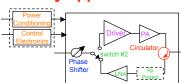
- Commercial SOA: does not exist
 Current ACT: 1W T/R using GaAs packaged parts, TRL 2
 - 1st Prototype demo (T/R only) in FY04
 - 2nd Prototype (T/R+controls) in FY05 (TRL 3 anticipated)

Tasks needed:

Develop membrane compatible T/R modules including attachment/packaging techniques and manufacturing techniques for low costs and high reliability

- 1. Optimize circuit design for membrane T/R
- 2. Improve T/R packaging and/or attachment
 - a- die inside a low profile package
 - b- direct attachment of die (i.e. flip chip)
- 3. Address radiation (through packaging) (>1MRad)
- 4. Increase transmit power (to 5-10W)
- 5. Increase efficiency (s.a. incorporating High-Eff PA)
- 6. Address thermal management
- 7. Address manufacturability, reliability
- 8. Add BIT and telemetry
- 9. Reduce cost <\$500 per module

NOTE: Tasks 1-9 are not yet funded

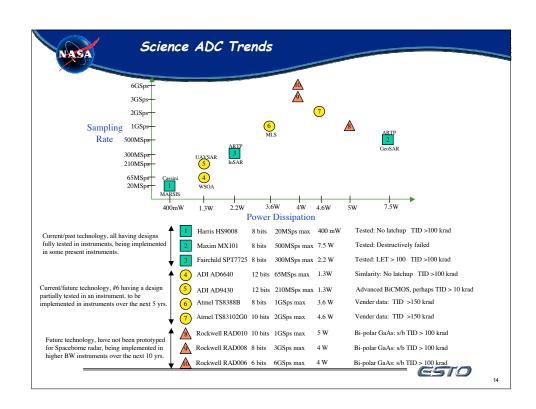

Single-Chip MMIC L-band NASA T/R Modules

for moderate to large SAR array applications

Current Status:

Most T/R modules consist of multiple (5-6) MMICs plus discrete passives in a hybrid microcircuit. Cost is typically \$1-5K in large quantities. Limited work is being done commercially to develop single chip L-band T/R modules. RF functions are being integrated into a single chip but some key components remain off-chip (circulators, control & power). Work is being done in CMOS for integrating the controls and GaAs for integrating the RF.

T/R module


Tasks needed:

Develop a fully integrated MMIC T/R module:

- 1. Develop individual RF components (PA, LNA, P/S, switches) using a rad-hard semiconductor process (e.g., GaAs, SOI CMOS, SiGe).
- 2. Develop digital control components, BIT and telemetry
- 3. Integrate into a single MMIC chip.
- 4. Improve RF performance (inc power, efficiency, reduce NF)
- 5. Address radiation hardness (with minimal shielding)

Waveform Generators applicable to nearly all radar applications **Current Status:** STEL-2375B GaAs NCO, 400 MHz max BW, 40 dB SFDR, 15W DC. Currently at TRL 6. Prototype built and tested, airborne validated. OSTM/WSOA will raise TRL from 6 to 9 by 2008. AD-9858, CMOS NCO, 325 MHz max BW, 3W DC, no radiation test data STEL-2375B high-speed GaAs available. Currently at TRL 4. In process of prototyping and radiation NCO-based DCG Tasks Needed: Direct-Digital-Synthesizer Technology Trends Develop low power, high-speed (>300MHz BW), rad-hard (1MRad) integrated chirp generators · Reduce power consumption <5W by 2006, <2W by 2008, <1W by 2012 · Increase speed (bandwidth) and SFDR (low • Reduce mass (eg., single chip ASIC) · Increase flexibility (arbitrary waveform Increase radiation hardness (particularly for 15 2 Years to market MEO, Geo applications) *ESTO*

High-Speed Science ADC

Current Assessment

- ADC trends indicate most Code Y missions will have suitable ADC devices available EXCEPT
 - MEO and GEO applications requiring radiation hardening
 - MEO or GEO SAR requiring very low DC power for distributed array architectures
 - Most SAR applications would benefit from higher dynamic range (# bits)

Future Technology Development Tasks

Development of rad-hard, low power, high-speed, >8-bit ADCs.

- 1. Reduced power consumption for large array applications (<0.5W)
- 2. Radiation hardening for MEO/Geo:

100kRad (by 2006)

500 KRad (by 2010)

1MRad (by 2014)

 Increased dynamic range: Increase the number of bits (from 8-bit to 12-bit) for moderately high-speed ADC (300MHz)

15

Signal Distribution & Interconnect

Current SOA: Cable Bundles

Current Status:

Large cable bundles distribute RF, power and control signals. These heavy cables are not compatible with ultra-lightweight antennas (i.e.-membrane). They are also expensive requiring extensive manual labor to build and integrate.

Tasks needed:

Development of technologies to simplify the interconnection of thousands of unit cells of ESA; significantly reduce mass and volume; develop reliable RF, control, power, and data distribution.

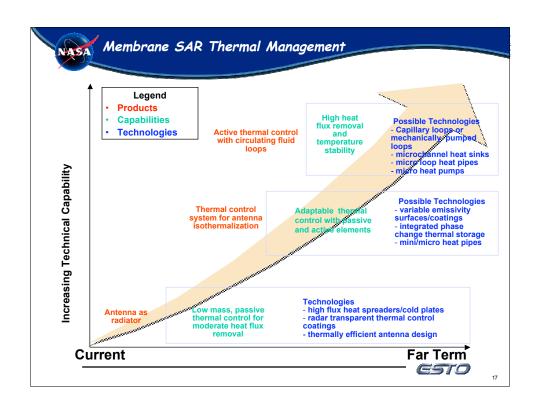
Sample Candidate Technologies:

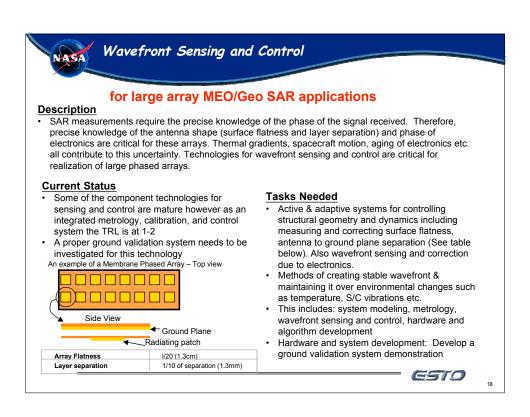
1- Printed interconnects:

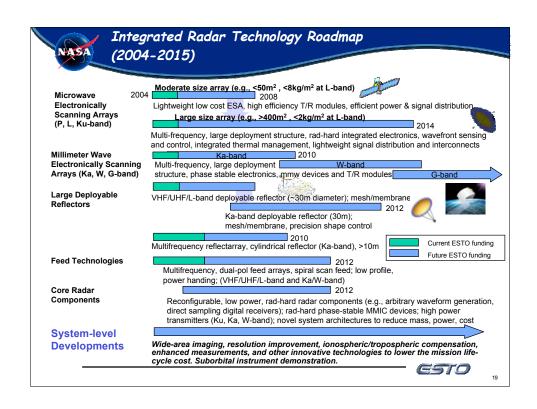
Challenges: Amount of current on printed lines, providing redundancy

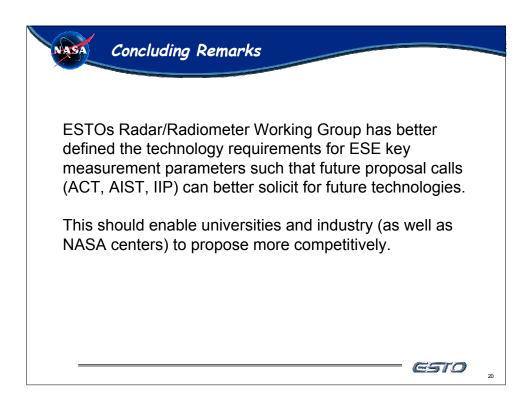
2- Wireless interconnects:

Challenges: Bandwidth to support the amount of data, Possible RF interference

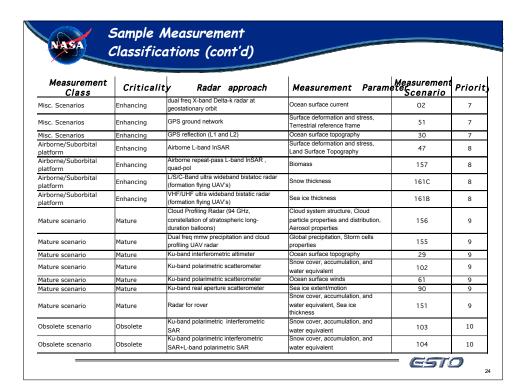

3- Optical interconnects:

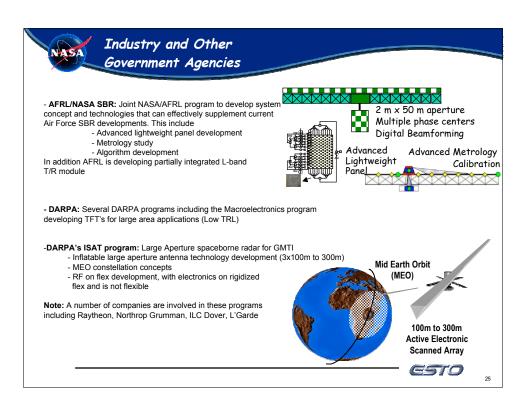

Challenges: Large mass and power consumption of optical components, reliability


4- Signal multiplexing:


Challenges: system complexity, interference/isolation

BACK-UP SLIDES




	lassificat	asurement ions		
Measurement Class	Criticalit	y Radar approach	Measurement Param	Measurement eter Scenario
arge Aperture SAR	Enabling	Constellation of L-band geosynchronous InSAR	Surface deformation and stress, Land Surface Topography	46
arge Aperture SAR	Enabling	MEO L-band InSAR	Surface deformation and stress, Land Surface Topography	45
Large Aperture SAR	Enabling	UHF/VHF polarimetric SAR	Soil moisture (deep)	112
Single-Pass Interferometer using phased-array	Enabling	Ka-band along/across track interferometric SAR	River stage height, River discharge rate	100
Single-Pass Interferometer using phased-array	Enabling	Ka-band synthetic aperture altimeter	Ocean surface topography	28
Single-Pass Interferometer using phased-array	Enabling	Ku-band single pass interferometric SAR	Ice surface topography	93
Single-Pass Interferometer using phased-array	Enabling	VHF/Ku-band space and frequency domain interferometic bistatic radar	Sea ice thickness	161A
Single-Pass Interferometer using phased-array	Enabling	X-band single pass InSAR	Land Surface Topography	163
Millimeter Wave Atmospheric Radar using Phased-Array	Enabling	14/35/94GHz Precipitation Radar	Global precipitation	76
Millimeter Wave Atmospheric Radar using Phased-Array	Enabling	14/35GHz Precipitation Radar	Global precipitation	75
Millimeter Wave Atmospheric Radar using Phased-Array	Enabling	35GHz Doppler rain profiling radar	Global precipitation, Storm cells properties	160
Millimeter Wave Atmospheric Radar using Phas <u>ed-Array</u>	Enabling	94/140GHz scanning cloud profiling radar	Cloud system structure, Cloud particle properties and distribution	159

Measurement Class	Criticalit	y Radar approach	Measurement Param	Measurement eter Scenario	Priorit
Moderate Aperture SAR	Enhancing	Ka-band single pass interferometric SAR	Sea ice thickness	97	4
Moderate Aperture SAR	Enhancing	Ku/L-band Polarimetric SAR	Snow cover, accumulation, and water equivalent	105	4
Moderate Aperture SAR	Enhancing	L-band dual polarization SAR	Freeze-thaw	22	4
Moderate Aperture SAR	Enhancing	L-band polarimetric SAR	Land cover and land use	162	4
Moderate Aperture SAR	Enhancing	L-band Repeat-Pass Interferometric SAR	Polar ice sheet/glacier velocity	92	4
Moderate Aperture SAR	Enhancing	LEO L-band InSAR	Surface deformation and stress	44a	4
Moderate Aperture SAR	Enhancing	LEO repeat-pass interferometric L-band SAR, quad polarization	Biomass	158	4
Moderate Aperture SAR	Enhancing	P-band polarimetric SAR	Biomass	19	4
Moderate Aperture SAR	Enhancing	Two formation flying LEO L-band SAR	Land Surface Topography	44b	4
Moderate Aperture SAR	Enhancing	Wide-swath Sea Ice Motion C-Band SAR	Sea ice motion and deformation	C1	4
Millimeter Wave Atmospheric Radar	Enhancing	35GHz Differential Frequency Precipitation Radar	Global precipitation	154	5
Millimeter Wave Atmospheric Radar	Enhancing	94GHz Cloud Profiling Radar	Cloud system structure, Cloud particle properties and distribution	142	5
Millimeter Wave Atmospheric Radar	Enhancing	Atmospheric occultation	Atmospheric water vapor, Ozone vertical profile	68	5
MEO Scatterometer	Enhancing	Ku-band polarimetric scatterometer at MEO	Ocean surface winds	148	6

NASA Academic and Industry

Representative listing of academic and industry participation/collaborations

- Radar Remote Sensing:
- Univ. of Michigan, UMass, University of Kansas
- Antennas:
- UCLA, UMass
- Lockheed, Raytheon, NGST, Ball, Harris, ILC Dover, L'Garde, Astro Aerospace, AEC Able, Composite Optics
- High Efficiency Power Devices and Amplifiers:
- Caltech, Univ. of Iowa
- CREE (SiC, GaN), CPI, Thales
- RF IC's, MMIC's, MEMS:
- University of Michigan, Arizona State University, Kansas State University, Caltech, UCLA
- Honeywell, Peregrine, Rockwell, Remec, U.S. Monolithics, NGST, Raytheon
- Packaging/Materials:
- Auburn University, Georgia Tech., Penn State

for large array MEO/Geo SAR applications

Current Status

· Hardware: Mixed-signal (ADC) and reconfigurable (FPGA) IC technology at TRI 4-5

Firmware: Algorithm development at TRL 3.

• Proof-of-concept demonstrated: STAR radiometry, SBR, next-generation DSN array (TRL 3-5).

Tasks Needed

Build a hardware prototype of multi-channel L-band DBF system:

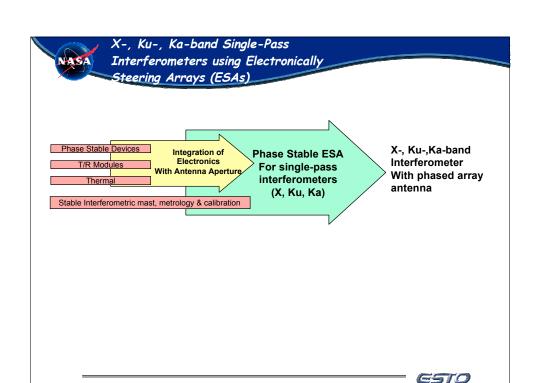
- 1. Rad-hard, low power, high-speed A/D conversion applied near antenna subsystem (at panel or element level).
- 2. Distributed microwave coaxial cables replaced with phase-stable digital fiber-optic network.
- 3. Address SEU immunity using "Rad-Hard by design" techniques

Instrument/Platform Requirements

- Large antenna: 20-50 m antenna span (rectangular panel array or circular aperture).
- Direct RF A/D conversion: 1.26 GHz carrier
- frequency, 80 MHz bandwidth, 8-12 bit resolution.
- · High data throughput: Electronic beam steering, combining >30 phase center channels.
- Phase stability: 10–100 millidegree phase precision over wide thermal gradients.
- On-board processing rate: 10-100 billion op/s.

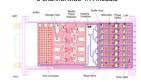
concept

High-speed GaAs


and SiGe ADCs (up to 6 GHz input bandwidth)

High density FPGAs (up to 8 million gates)

Technology path toward single-chip receivers for a SAR array.



Ka-band T/R Modules

similar roadmap for Ku-band or X-band

Layout of Receive side of 8-channel MSL T/R module

Photograph of receive side of 8-channel MSL T/R module

Current Status:

- 1 W transmit chain, 20% efficiency demonstrated (using Triquint 2W chip) (TRL 3)
- · 8-channel LTCC module w/ GaAs MMICs
 - 17 dBm output power, 4GHz BW
 - · Low power-added efficiency (low power module)
 - · 30 g/channel mass
- · Developed under ATIP and Mars Focused Tech Program
 - Multi-module brassboard demonstrated circuitry (TRL 4)
- · There are no equivalent commercial products

Tasks needed:

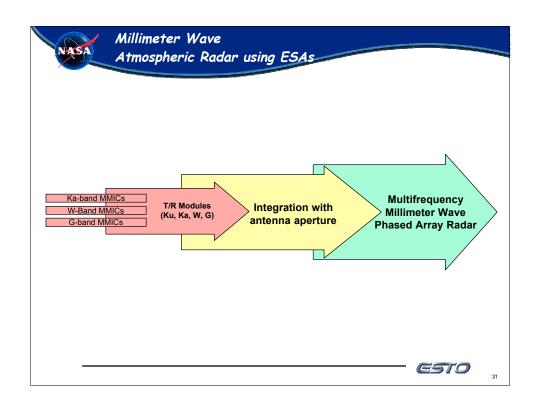
- 1. Improvement in efficiency to 30% (by 2006) to 50% (by 2010)
- 2. Increase power to 3W (by 2006) to 10W (by 2010) (Triquint 6W MMIC chip recently available)
- 3. Address phase stable receive electronics (for interferometers)
- Further miniaturization and application specific packaging (ie, 2D array)
- 5. Reduced mass and cost
- 6. Add BIT and telemetry

29

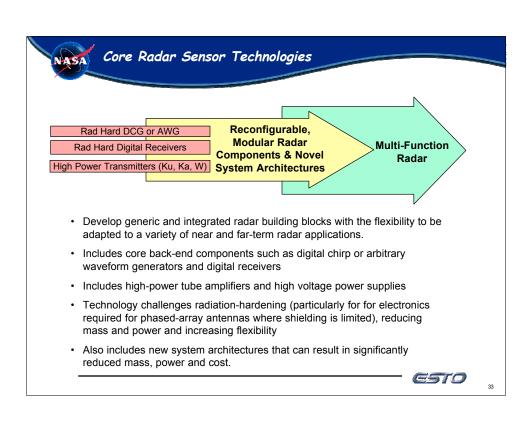
W-band & G-band Devices for T/R modules

MMIC development at 95GHz and 140GHz

Current Status:


- W-band (95 GHz) components:
 - 0.25W PA, 6dB NF LNA
- · G-band (140 GHz) components:
 - · T/R components (particularly PA) do not exist

Tasks needed:


Basic research to develop new MMIC devices using GaAs, GaN, InP, MEMS (or other emerging semiconductor technologies) at 95 GHz and 140 GHz for future T/R modules

- Develop MMIC devices such as power amplifiers (PAs), LNAs, Phase Shifters, switches, filters. Performance goals:
 - W-band MMICs: 1W PA with 20% PAE, <4dB NF LNA, 4-bit phase shifter (<3dB loss)
 - · G-band MMICs: 0.5W PA with 10% PAE, 6dB NF LNA
- 2. Develop low loss power combining and packaging technologies at 95GHz and 140GHz for future T/R modules
- 3. Address the integration of the MMICs for T/R modules

